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a b s t r a c t

In this paper, the analytical solution of hyperbolic bio-heat equation under intense moving heat source is
presented. The exact solution in the domain of Laplace’s transform is obtained. The thermal damages to
the tissues are evaluated by the extent of the denatured protein employing with the Arrhenius equation.
The results indicate that the hyperbolic bio-heat model reduces to the parabolic bio-heat model when the
thermal relaxation time is zero. Numerical results for temperatures and thermal damages are represented
graphically. The effects of heat source velocity on the temperature of skin tissue and thermal damages are
studied. These results can be used as a confirmation part for studying the practical operations such as
scanning laser treatment and other numerical solutions.

! 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent years, the temperature estimation in living tissue
is under the concentration of the researchers. The thermal treat-
ment method has been widely used in modern medicine, such as
laser surgery [1], infrared irradiation [2], laser tissue soldering
[3], hyperthermia [4] and other therapy methods. Between these
clinical processes, the moving heat sources applications to living
tissue considering exudation rate is observed in certain plastic sur-
gery operation such as the removal of moles or laser tattoos or the
thermal action of the cornea to correct hyperopia. Heat transfer in
skin tissues are complex operations that contains heat conduction
in the tissues and vascular system, convection between tissues and
blood cause to blood flow, perfusion into canicular tissues, meta-
bolic heat, sweating, etc. In 1948, Pennes [5] established the para-
bolic bio-heat equation, in which blood perfusion and metabolic
thermal production are imported into the equation as a convective
term. There are several numerical and analytical solutions for this
equation in the literature. For instance, Gupta et al. [6] utilized the
electromagnetic radiation to investigate the thermal therapy by
using the finite element method. Dillenseger and Esneault [7] stud-
ied the development of temperature over time in hypothermia by
using finite difference method. Zhu et al. [8] used the theory of dif-
fusion to estimate the deposition of light energy in tissues and the

rate process model for the resulting thermal damages. Diaz et al.
[9] used the finite element scheme to get the solution of heat dif-
fusion model in the tissues to improve the thermal damages mod-
els for laser irradiated cartilages. The analytical solutions are very
interested due to their exact estimation and lower cost in compar-
ison with experiment and numerical calculations. There are some
analytical solutions for this problem too. Brix et al. [10] introduced
an analytical solution for the Penne’s bioheat model using the
Green’s function for investigating thermal response to Radio
Frequency heating. Ahmadikia et al. [11] presented the solutions
of parabolic and hyperbolic bio-heat equations analytically in the
skin tissues induced by constant and transient heat flux. Kengne
and Lakhssassi [12] solved analytically a simplified one-
dimensional spherical form of bioheat model, using the separation
of variable method combined with the Green’s function method.
Rodrigues et al. [13] derived an exact solution for one-
dimensional form of bioheat model in cylindrical or spherical coor-
dinates, considering multi-layer region. There are several phenom-
ena such as moving laser processing in welding or laser alloying,
which can be modeled as moving spot heating source. Abbas
[14–17] studied some thermoelastic problems due to moving heat
source. In addition, Marin [18,19] investigated the thermoelastic
interactions in porous media. To our knowledge, there is no analyt-
ical solution for the hyperbolic bio-heat model under a moving
heat source.

In this paper, the analytical solution for the hyperbolic bio-heat
model under a moving heat source is introduced. Such as the inter-
action of the continuous scanning laser, the numerical results can
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be used as a confirmation division for the interaction of living tis-
sue subjected to moving heat source.

2. Statement of the problem

The geometric model of skin tissues is established as Fig. 1. By
considering the notion of finite thermal propagation speed. Based
on Cattaneo [20] for heat flux inclusive the characteristic time so
as well as the Pennes’s model, a general form of the heat wave pat-
tern of bio-heat transfer in skin tissue is established by [11,21]:

kr2T ¼ 1þ so
@

@t

! "
qc @T

@t
þxbqbcbðT $ TbÞ $ Qm $ Qext

! "
; ð1Þ

where is the tissue mass density, qb is the blood mass density, T is
the tissues temperature, so is the thermal relaxation time, Tb is the
blood temperature k is the tissue thermal conductivity, c is
the specific heat of tissue, xb is the blood perfusion rate, Qm is
the metabolic heat generation in skin tissues, cb is the blood specific
heat, t is the time and Qext is the moving line heat source. We con-
sider a finite domain of skin tissue with a thickness L with its sur-
face and its bottom boundary are assumed to be thermally
insulated as in Fig. 1.

So that the models of bio-heat equation with external heat
source have the following form [11]
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In order to solve the equation of bio-heat conduction, two initial
conditions following the description of the physical model are
necessary:

Tðx;0Þ ¼ Tb;
@Tðx; tÞ

@t

####
t¼0

¼ 0:0: ð3Þ

In the bio-heat transfer models under consideration, both upper
surface and the lower boundary are assumed to be thermally
insulated.
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For convenience, the non-dimensional quantities can be intro-
duced by
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In terms of these dimensionless form of variables in (5), Eqs.
(2)–(4) can be written in the following forms (the prime has been
dropped for convenience)
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The non-dimensional source term Qextðx; tÞ is a moving line heat
source which can be expressed as [14]:

Qextðx; tÞ ¼ Qodðx$ vtÞ; ð9Þ

where v is constant velocity, d is the delta function and Qo is
constant.

3. Laplace’s transforms

The definition of Laplace transforms for every functionXðx; tÞ by

!Xðx; sÞ ¼ L½Xðx; tÞ' ¼
Z 1

0
Xðx; tÞe$stdt; s > 0; ð10Þ

where s is the parameter of Laplace’s transforms. Hence, the above
equations can be given by
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By using the boundary conditions (12), The general solution of
inhomogeneous Eq. (11) can be written in the form

!Tðx; sÞ ¼ A1e$ax þ A2eax þ
b
a2 $

!
f2 $ a2

e$fx; ð13Þ

where a2 ¼ ð1þ sÞð1þ ssoÞ, b ¼ Qm
s , ! ¼ ð1þ ssoÞ Qo

v , f ¼ s
v,
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ð$1þe2LaÞað$a2þf2Þ
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.

In the spaces x and the time domain t, we adopt a numerical
inversion method for the final solution of the temperature distribu-
tions. The numerical results have been obtained based on Stehfest
[22]. In this method, the inverse Xðx; tÞ of the Laplace transform
!Xðx; sÞ is approximated by the relation

Xðx; tÞ ¼ ln2
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where Vj is given by the following equation:
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4. Thermal damage

The assessment of burn is part of the ultimate significant char-
acteristics in the bioengineering science in skin tissues. Accurate
prediction of thermal damage for skin tissue is helpful for heat
therapy. In order to quantify the thermal damage, one can use
the method developed by Henriques and Moritz [23,24]. It can be
expressed as follows:

X ¼
Z t

0
Be$

Ea
RTdt; ð16Þ

Fig. 1. Schematic diagram of biological tissue.
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